胡良剑邮箱,怎么联系胡剑云

hacker|
88

基于matlab数字滤波器的设计

摘要

《数字信号处理》课程是一门理论性和实践性都很强, 它具备高等代数、数值分析、概率统计、随机过程等计算学科的知识; 要求我们学生掌握扎实的基础知识和理论基础。 又是跟其他学科密切相关,即与通信理论、计算机、微电子技术不可分,又是人工智能、模式识别、神经 *** 等新兴学科的理论基础之一。 本次数字滤波器设计 *** 是基于MATLAB的数字滤波器的设计。此次设计的主要内容为:IIR数字滤波器和FIR数字滤波器的设计

关键词:IIR、FIR、低通、高通、带阻、带通

Abstract

"Digital Signal Processing" is a theoretical and practical nature are strong, and it has advanced algebra and numerical *** ysis, probability and statistics, random process such as calculation of discipline knowledge; requires students to acquire basic knowledge and a solid theoretical basis. Is closely related with other subjects, namely, and communication theory, computers, microelectronics can not be separated, but also in artificial intelligence, pattern recognition, neural network theory one of the emerging discipline. The digital filter design method is based on MATLAB for digital filter design. The main elements of design: IIR and FIR digital filter design of digital filter

Key Words: IIR, FIR, low pass, high pass, band stop, band pass

目录

一、 前言 3

二、 课程设计的目的 3

三、 数字信号处理课程设计说明及要求 3

四、 滤波器的设计原理 4

4.1 数字滤波器简介 4

4.2 IIR滤波器的设计原理 4

4.3 FIR滤波器的设计原理 5

4.4 FIR滤波器的窗函数设计法 6

五、 设计内容 6

5.1 设计题目: 6

5.2设计程序代码及结果: 7

六、 结束语 15

七、 参考文献 16

一、 前言

数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。

二、 课程设计的目的

1)

三、 数字信号处理课程设计说明及要求

所需硬件:PC机

四、 滤波器的设计原理

4.1 数字滤波器简介

数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。如果系统是一个连续系统,则滤波器称为模拟滤波器。如果系统是一个离散系统,则滤波器称为数字滤波器。

信号 通过线性系统后,其输出 就是输入信号 和系统冲激响应 的卷积。除了 外, 的波形将不同于输入波形 。从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。除非 为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分 较大的模,因此, 中这些频率成分将得到加强,而另外一些频率成分 的模很小甚至为零, 中这部分频率分量将被削弱或消失。因此,系统的作用相当于对输入信号的频谱进行加权。

4.2 IIR滤波器的设计原理

IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计 *** 来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。

IIR数字滤波器的设计步骤:

(1) 按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标;

(2) 根据模拟滤波器技术指标设计为响应的模拟低通滤波器;

(3) 很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;

(4) 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的 *** 来得到所要的滤波器。

4.3 FIR滤波器的设计原理

FIR滤波器通常采用窗函数 *** 来设计。窗设计的基本思想是,首先选择一个适当的理想选频滤波器(它总是具有一个非因果,无限持续时间脉冲响应),然后街区(加窗)它的脉冲响应得到线性相位和因果FIR滤波器。我们用Hd(e^jw)表示理想的选频滤波器,它在通带上具有单位增益和线性相位,在阻带上具有零响应。一个带宽wcpi的低通滤波器由下式给定:

为了从hd(n)得到一个FIR滤波器,必须同时在两边截取hd(n)。而要得到一个因果的线性相位滤波器,它的h(n)长度为N,必须有:

这种操作叫做加窗,h(n)可以看做是hd(n)与窗函数w(n)的乘积:

h(n)=hd(n)w(n)

其中

根据w(n)的不同定义,可以得到不同的窗结构。

在频域中,因果FIR滤波器响应H(e^jw)由Hd(e^jw)和窗响应W(e^jw)的周期卷积得到,即

常用的窗函数有矩形窗、巴特利特(BARTLETT)窗、汉宁(HANNING)窗、海明(HAMMING)窗、布莱克曼(BLACKMAN)窗、凯泽(KAISER)窗等。

4.4 FIR滤波器的窗函数设计法

FIR滤波器的设计 *** 有许多种,如窗函数设计法、频率采样设计法和更优化设计法等。窗函数设计法的基本原理是用一定宽度窗函数截取无限脉冲响应序列获得有限长的脉冲响应序列,主要设计步骤为:

(1) 通过傅里叶逆变换获得理想滤波器的单位脉冲响应hd(n)。

(2) 由性能指标确定窗函数W(n)和窗口长度N。

(3) 求得实际滤波器的单位脉冲响应h(n), h(n)即为所设计FIR滤波器系数向量b(n)。

五、 设计内容

5.1 设计题目:

1-1.试用MATLAB设计一巴特沃斯低通数字滤波器,要求通带截至频率Wp=30HZ,主带截至频率为Ws=35HZ,通带衰减不大于0.5DB,主带衰减不小于40DB,抽样频Fs=100HZ。

1-2.基于Butterworth模拟滤波器原型,使用双线性状换设计数字滤波器:各参数值为:通带截止频率Omega=0.2*pi,阻带截止频率Omega=0.3*pi,通带波动值Rp=1dB,阻带波动值Rs=15dB,设Fs=20000Hz。

1-3设计一巴特沃斯高通数字滤波器,要求通带截止频率0.6*pi,通带衰减不大于1dB,阻带衰减15DB,抽样T=1。

1-4.设计一巴特沃斯带阻数字滤波器,要求通带上下截至频率为0.8*PI、0.2*PI,通带衰减不大于1DB,阻带上下截至频率0.7*PI、0.4*PI 阻带衰减不小于30DB,

2-1.用窗函数法设计一个线性相位FIR低通滤波器,并满足性能指标:通带边界频率

Wp=0.5*pi,阻带边界频率Ws=0.66*pi,阻带衰减不小于40dB,通带波纹不大于3dB。选择汉宁窗。

2-4.用海明窗设计一个FIR滤波器,其中Wp=0.2*pi,Ws=0.3*pi,通带衰减不大于0.25dB,阻带衰减不小于50dB。

5.2设计程序代码及结果:

1-1一.试用MATLAB设计一巴特沃斯低通数字滤波器,要求通带截至频率Wp=30HZ,阻带截至频率为Ws=35HZ,通带衰减不大于0.5DB,阻带衰减不小于40DB,抽样频Fs=100HZ。

代码为:

fp = 30;

fs = 35;

Fs = 100;

wp = 2*pi*fp/Fs;

ws = 2*pi*fs/Fs;

wp = tan(wp/2);

ws = tan(ws/2); % 通带更大衰减为0.5dB,阻带最小衰减为40dB

[N, wn] = buttord(wp, ws, 0.5, 40, 's'); % 模拟低通滤波器极零点

[z, p, k] = buttap(N); % 由极零点获得转移函数参数

[b, a] = zp2tf(z, p, k); % 由原型滤波器获得实际低通滤波器

[B, A] = lp2lp(b, a, wp);

[bz, az] = bilinear(B, A, .5);

[h, w] = freqz(bz, az, 256, Fs);

figure

plot(w, abs(h))

grid on

图1 巴特沃斯数字低通滤波器

1-2基于Butterworth模拟滤波器原型,使用双线性状换设计数字滤波器:各参数值为:通带截止频率Omega=0.2*pi,阻带截止频率Omega=0.3*pi,通带波动值Rp=1dB,阻带波动值Rs=15dB,设Fs=4000Hz。

代码:

wp=0.2*pi;ws=0.3*pi;

Fs=4000;T=1/Fs;

OmegaP=(2/T)*tan(wp/2);

OmegaS=(2/T)*tan(ws/2);

rp=1;rs=15;as=15;

ripple=10^(-rp/20);attn=10^(-rs/20);

[n,wn]=buttord(OmegaP,OmegaS,rp,rs,'s');

[z,p,k]=Buttap(n);

[b,a]=zp2tf(z,p,k);

[bt,at]=lp2lp(b,a,wn);

[b,a]=bilinear(bt,at,Fs);

[db,mag,pha,grd,w]=freqz_m(b,a);

%

%下面绘出各条曲线

subplot(2,2,1);plot(w/pi,mag);title('Magnitude Frequency幅频特性');

xlabel('w(/pi)');ylabel('|H(jw)|');

axis([0,1,0,1.1]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 1]);

set(gca,'YTickMode','manual','YTick',[0 attn ripple 1]);grid

subplot(2,2,2);plot(w/pi,db);title('Magnitude Frequency幅频特性(db)');

xlabel('w(/pi)');ylabel('dB');

axis([0,1,-30,5]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 1]);

set(gca,'YTickMode','manual','YTick',[-60 -as -rp 0]);grid

subplot(2,2,3);plot(w/pi,pha/pi);title('Phase Frequency相频特性');

xlabel('w(/pi)');ylabel('pha(/pi)');

axis([0,1,-1,1]);

subplot(2,2,4);plot(w/pi,grd);title('Group Delay群延时');

xlabel('w(/pi)');ylabel('Sample');

axis([0,1,0,15]);

set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 1]);grid

运行结果:

图2巴特沃思数字低通滤波器幅频-相频特性

1-3设计一巴特沃斯高通数字滤波器,要求通带截止频率0.6*pi,通带衰减不大于1dB,阻带衰减15DB,抽样T=1。

Wp=0.6*pi;

Ws=0.4*pi;

Ap=1;

As=15;

[N,wn]=buttord(Wp/pi,Ws/pi,Ap,As); %计算巴特沃斯滤波器阶次和截止频率

%频率变换法设计巴特沃斯高通滤波器

[db,mag,pha,grd,w]=freqz_m(b,a); %数字滤波器响应

plot(w,mag);

title('数字滤波器幅频响应|H(ej\Omega)|')

图3巴特沃斯数字高通滤波器

2-1用窗函数法设计一个线性相位FIR低通滤波器,并满足性能指标:通带边界频率

Wp=0.5*pi,阻带边界频率Ws=0.66*pi,阻带衰减不小于40dB,通带波纹不大于3dB。选择汉宁窗。

代码:

wp =0.5*pi;

ws=0.66*pi;

wdelta =ws-wp;

N= ceil(8*pi/wdelta)

if rem(N,2)==0

N=N+1;

end

);

运行结果:

给分就给你个全的!

图6低通FIR滤波器

六、 结束语

本次数字滤波器设计 *** 是基于MATLAB的数字滤波器的设计,是用学过的数字信号理论为依据,用MATLAB代码来实现。课程设计过程中,通过IIR数字滤波器和FIR数字滤波器的设计实例,说明如何利用MATLAB来完成数字滤波器的设计。窗函数法中相位响应有严格的线性,不存在稳定性问题, 设计简单。双线性变换不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,但会产生频率混碟现象,使数字滤波器的频响偏移模拟滤波器的频响。由滤波器的频谱图和滤波前后的语音信号的频谱图对比可知本设计选用双线性变换法设计的IIR滤波器比较好。在同样的技术指标的要求下,IIR滤波器所要求的阶数N也比较小,实现起来比较容易。

通过综合运用数字信号处理的理论知识进行滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现,从而加深了对所学知识的理解,建立概念。对以前在课本上所学的东西有了更深入的理解和掌握。最后,无论做什么课程设计,都需要要有一定的理论知识作为基础,同时通过这次课程设计,我对于以前所学的数字信号处理知识有了更深的理解。

七、 参考文献

1. 程佩青《数字信号处理教程》北京清华大学出版社2007年2月.

2. 赵知劲、刘顺兰《数字信号处理实验》.浙江大学出版社.

3. S.K.Mitra.Digital Signal Processing:A Computer-Based Approach.

NewYork,NewYork:McGraw-Hill,thirded,2006.

4. 肖伟、刘忠等《 MATLAB程序设计与应用》清华大学出版社、北京交通大学出版社.

5. 胡良剑、孙晓君 《 MATLAB数学实验》.高等教育出版社.

东华大学的那个胡良剑教授是哪里人

安徽人

胡良剑

理学院教授、硕士生导师(正高级职称)。 校教学委员会委员。 中国工程概率统计协会理事中国运筹学会不确定系统分会理事中国大学生数学建模竞赛上海市组委会委员中国系统仿真学会生命系统建模仿真专业委员会委员。

研究方向:

模糊系统理论、非线性随机控制、随机微分方程及其应用。

荣誉及获奖情况:

1、上海市教学成果二等奖,2005年

2、上海市优秀教材二等奖,2003年

3、上海市教学成果二等奖,2001年

4、全国大学生数学建模竞赛优秀指导教师,2001年

近几年担任的科研项目:

1、模糊随机系统的分析与更优控制理论研究,国家自然科学基金

2、模糊随机系统的控制理论,上海市教委青年基金

3、随机分析及其在金融工程中的应用研究,上海市白玉兰人才基金

近几年发表的论著:

Liangjian Hu, Xuerong Mao, Almost sure exponential stabilisation of stochastic systems by state-feedback control

Automatica, Volume 44, Issue 2, February 2008, Pages 465-471

Yongsheng Ding, Min Xu, Liangjian Hu, Asymptotic Behavior and Stability of a Stochastic Model for AIDS Tran *** ission, Applied Mathematics and Computation, Volume 204, Issue 1, 1 October 2008, Pages 99-108

Y. Feng, M Chen, L. Hu, On the Observability of Continuous-Time Dynamic Fuzzy Control Systems, INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, Feb 2007, Vol 15, No1, Page75-91.

余正元,胡良剑,基于参数化LMI *** 的随机模糊系统H∞控制, 东华大学学报,2007,12期

杨爱娜,胡良剑,非线性时滞随机模糊系统的均方镇定,纺织高校基础科学学报,2007,20卷,1期,25-29.

胡良剑, 赵伟国, 冯玉瑚,伊藤型模糊随机微分方程,工程数学学报,2006年1期

Y. Feng, L. Hu,On the quasi-controllability of continuous-time dynamic fuzzy control systems, Chaos, Solitons Fractals, Volume 30, Issue 1,2006,177-188

L. Hu, S. Shao, W. Zhao, Robust Stochastic Stabilization and Robust Hinf Control for Uncertain Stochastic Fuzzy Systems, Int Conf IEEE FUZZ, 2005,Reno,USA. pp 254-259.

徐昊 胡良剑,连续时间加噪声随机T-S模糊系统的适定性,纺织高校基础科学学报2005年4期

李毓陵 丁辛 胡良剑 ,纵横编织中的置换理论,东华大学学报(自然科学版)2005年1期

胡良剑, 邵世煌,吴让泉, T-S模糊随机系统的均方镇定,信息与控制,2004,33(5), 545-559。

田增锋,胡良剑,随机微分方程数值求解的两种插值法比较,纺织高校基础科学学报,2003,16(1): 14-18.

Liangjian Hu, Zengjing Chen, Xuerong Mao, Stochastic Differential Equations and Related Topics, Science Press, 2007.

胡良剑, 孙晓君,MATLAB数学实验, 北京:高等教育出版社,2006。

姜健飞, 胡良剑,唐俭,数值分析及其MATLAB实验,北京:科学出版社,2004。

胡良剑,丁晓东, 孙晓君,数学实验――使用MATLAB, 上海:上海科学技术出版社,2001。(获得上海市优秀教材奖)

国际交流与合作:

1. 台湾, 国立清华大学电机工程系,2004

2. 英国,Strathclyde大学统计系, 2005-2006

讲授课程:

应用随机微分方程、数值分析、数学建模、数学实验、应用统计、时间序列分析、金融工程学

办公室 *** :67792089-543

电子邮箱地址:Ljhu@dhu.edu.cn

学生寄语:

一分耕耘, 一分收获

5条大神的评论

  • avatar
    访客 2022-10-09 下午 05:44:56

    zzy Systems, Int Conf IEEE FUZZ, 2005,Reno,USA. pp 254-259. 徐昊 胡良剑,连续时间加噪声随机T-S模糊系统的适定性,纺织高校基础科学学报2005年4期 李毓陵 丁辛 胡良剑 ,纵横编织中的置

  • avatar
    访客 2022-10-09 下午 11:05:09

    asic knowledge and a solid theoretical basis. Is closely related with other subjects, namely, and communication theory, compu

  • avatar
    访客 2022-10-09 下午 11:05:30

    %计算巴特沃斯滤波器阶次和截止频率 %频率变换法设计巴特沃斯高通滤波器[db,mag,pha,grd,w]=freqz_m(b,a); %数字滤波器响应plot(w,

  • avatar
    访客 2022-10-09 下午 07:59:16

    buttord(wp, ws, 0.5, 40, 's'); % 模拟低通滤波器极零点[z, p, k] = buttap(N); % 由极零点获得转移函数参数[b, a] = zp2tf(z,

  • avatar
    访客 2022-10-09 下午 10:36:35

    az, 256, Fs);figureplot(w, abs(h))grid on图1 巴特沃斯数字低通滤波器1-2基于Butterworth模拟滤波器原型,使用双线性状换设计数字滤波器:各参数值为:通带截止频率Omega=0.2*pi,阻带截止频率Omega

发表评论